一、生成实验数据
原理:sql 蠕虫复制(这种生成数据方式同样适用于数据表中有主键的情况)。
insert into comic (name,pen_name,cover) select name,pen_name,cover from comic
二、慢查询日志设置
当语句执行时间较长时,通过日志的方式进行记录,这种方式就是慢查询的日志。
1、临时开启慢查询日志(如果需要长时间开启,则需要更改mysql配置文件,第6点有介绍)
set global slow_query_log = on;
注:如果想关闭慢查询日志,只需要执行 set global slow_query_log = off; 即可
2、临时设置慢查询时间临界点查询时间高于这个临界点的都会被记录到慢查询日志中(如果需要长时间开启,则需要更改mysql配置文件,第6点有介绍)。
set long_query_time = 1;
现在起,所有执行时间超过1秒的sql都将被记录到慢查询文件中(我这里就是 /data/mysql/mysql-slow.log)。
3、设置慢查询存储的方式
set globle log_output = file;
说明: 可以看到,我这里设置为了file,就是说我的慢查询日志是通过file体现的,默认是none,我们可以设置为table或者file,如果是table则慢查询信息会保存到mysql库下的slow_log表中
4、查询慢查询日志的开启状态和慢查询日志储存的位置
show variables like '%quer%';
参数说明:
slow_query_log : 是否已经开启慢查询
slow_query_log_file :慢查询日志文件路径
long_query_time : 超过多少秒的查询就写入日志
log_queries_not_using_indexes 如果值设置为ON,则会记录所有没有利用索引的查询(性能优化时开启此项,平时不要开启)
5、使用慢查询日志示例
cat -n /data/mysql/mysql-slow.log
从慢查询日志中,我们可以看到每一条查询时间高于1s钟的sql语句,并可以看到执行的时间是多少。
比如上面,就表示 sql语句select * from comic where comic_id < 1952000; 执行时间为3.902864秒,超出了我们设置的慢查询时间临界点1s,所以被记录下来了。
6、永久设置慢查询日志开启,以及设置慢查询日志时间临界点
linux中,mysql配置文件一般默认在 /etc/my.cnf
更改对应参数即可。
三、对慢查询日志进行分析
我们通过查看慢查询日志可以发现,很乱,数据量大的时候,可能一天会产生几个G的日志,根本没有办法去清晰明了的分析。所以,这里,我们采用工具进行分析。
1、使用mysqldumpslow进行分析【第一种方式】
mysqldumpslow -t 10 /data/mysql/mysql-slow.log #显示出慢查询日志中最慢的10条sql
注:mysqldumpslow工具还有其他参数,以提供其他功能,这里,只以最基本的-t做了介绍。
2、使用pt-query-digest工具进行分析
mysqldumpslow是mysql安装后就自带的工具,用于分析慢查询日志,但是pt-query-digest却不是mysql自带的,如果想使用pt-query-digest进行慢查询日志的分析,则需要自己安装pt-query-digest。pt-query-digest工具相较于mysqldumpslow功能多一点。
(1)安装
yum install perl-DBI
yum install perl-DBD-MySQL
yum install perl-Time-HiRes
yum install perl-IO-Socket-SSL
wget percona.com/get/pt-query-digest
chmod u+x pt-query-digest
mv pt-query-digest /usr/bin/
(2)查看具体参数作用
pt-query-digest –help
(3)使用
pt-query-digest /data/mysql/mysql-slow.log
查询出来的结果分为三部分
第一部分:
显示出了日志的时间范围,以及总的sql数量和不同的sql数量。
第二部分:
显示出统计信息。
第三部分:
每一个sql具体的分析
pct是percent的简写,表示占的百分比
cout是占总sql个数的百分比,exec time 是占总执行时间的百分比,lock time 表示占总的锁表时间的百分比。
(4)如何通过pt-query-digest 慢查询日志发现有问题的sql
1)查询次数多且每次查询占用时间长的sql
通常为pt-query-digest分析的前几个查询
2)IO消耗大的sql
注意pt-query-digest分析中的Rows examine项
3)为命中索引的sql
注意pt-query-digest分析中Rows examine(扫描行数) 和Rows sent (发送行数)的对比,如果扫描行数远远大于发送行数,则说明索引命中率并不高。
四、对sql进行优化
1、使用explain查询sql的执行计划
explain select comic_id,name,pen_name,cover,last_verify_time from comic;
参数分析:
table:表示属于哪张数据表
type:最重要的参数,表示连接使用了何种类型。从最好到最差的连接类型为const,eq_reg,ref,range,index和ALL。
possible_keys:显示可能应用在这张表中的索引。如果为null,则表示没有可能的索引。
key:实际使用的索引。如果为null,则表示没有使用索引。
key_len:使用的索引的长度,在不损失精确性的情况下,长度越短越好。
ref:表示索引的哪一列被使用了,如果可能的话,是一个常数。
rows:Mysql认为必须检查的用来返回请求数据的行数。
2、count() 和 Max() 的优化方法
(1)优化前,是没有为last_update_time字段建立索引的情况,查询最大的时间戳
(2)优化后,是为last_update_time字段建立索引的情况,查询最大的时间戳
create index update_time on comic(last_update_time);
对比,可以看到,在没有为字段建立索引的情况下,查询时间是11秒多,建立索引之后,查询时间变成0秒了。
所以总结就是,如果经常用于count和max操作的字段,可以为其添加索引。
还有,值得注意的地方是:count() 计算时,count(*)会将这一列中的null值但也算进去,而count(comic_id)则不会将null算进去。
3、子查询的优化
通常情况下,需要把子查询优化为join查询,但在优化时要注意关联键是否有一对多的关系,如果有,是可能会出现重复数据的。所以如果存在一对多关系,则应该使用distinct进行限制。
例如:
select t.idfrom t where t.id in (select k.kid from k);
优化成:
select distinct t.id from t join k on t.id = k.kid;
4、group by的优化
#待补
5、limit的优化
五、对索引进行优化
1、选择合适的列建立索引
2、索引优化sql的方法
3、索引维护的方法
六、数据库结构优化
1、选择合适的数据类型
2、数据库表的范式化优化
3、数据库表的反范式优化
4、数据库表的垂直拆分
5、数据库表的水平拆分
七、系统配置优化
1、数据库系统配置优化
2、Mysql配置文件优化
3、第三方配置工具使用
八、服务器硬件优化
原创文章,作者:筱凯,如若转载,请注明出处:https://www.jingyueyun.com/ask/922.html